
ICFP Programming Contest 2019 Report

Ilya Sergey

https://icfpcontest2019.github.io

ICFP Programming Contests
• Annual contest, running since 1998

• Goes for 72 hours (long weekend), usually with a 24 hour lightning division

• Modest cash prizes but unlimited bragging rights
• Language X is the programming tool of choice for discriminating hackers
• Language X is a fine programming tool for many applications
• Language X is very suitable for rapid prototyping
• Team Z are an extremely cool bunch of hackers

• Each year the contest is organised by a different group of FP hackers

• 2012: Mining lambdas from caves in Scotland

• 2013: Program synthesis

• 2014: Programming Pac LambdaMan

• 2015: Hexagonal Tetris with secret words

• 2016: Origami folding

• 2017: Lambda-punting

• 2018: 3D constructions (and destructions) using nano-bots

Recent History

ICFP 2017
Hey, would you like to jump  

at the one-in-a lifetime opportunity  
to run the ICFP Programming

Contest in 2019?

ICFP 2019 General Chair

Sure, sounds like a lot of fun!

ICFP 2017
Hey, would you like to jump  

at the one-in-a lifetime opportunity  
to run the ICFP Programming

Contest in 2019?

ICFP 2018

Yay, I’ll be running the ICFP
Programming Contest 

next year!

ICFP Programming Contest 2019

By 2019 Functional Programming
has taken over the World

By 2019 Functional Programming
has taken over the World

• 2012: Mining lambdas from caves in Scotland

• 2013: Program synthesis

• 2014: Programming Pac LambdaMan

• 2015: Hexagonal Tetris with secret words

• 2016: Origami folding

• 2017: Lambda-punting

• 2018: 3D constructions (and destructions) using nano-bots

• 2012: Mining lambdas from caves in Scotland

• 2013: Program synthesis

• 2014: Programming Pac LambdaMan

• 2015: Hexagonal Tetris with secret words

• 2016: Origami folding

• 2017: Lambda-punting

• 2018: 3D constructions (and destructions) using nano-bots

By 2019 Functional Programming
has taken over the World

2012: Mining lambdas  
from caves in Scotland

2.1 Mine layout

A mine is an n ⇥m grid of cells, with the convention that (1, 1) is the bottom left and (n,m) is the top

right. Each cell contains one of the following:

Mining Robot (R in ASCII) Wall (# in ASCII)

Rock (* in ASCII) Lambda (\ in ASCII)

Closed Lambda Lift (L in ASCII) Open Lambda Lift (O in ASCII)

Earth (. in ASCII) Empty ([SPACE] in ASCII)

Nothing can pass through a Wall, or outside the n⇥m grid of the mine. The mining Robot can excavate
Earth, move into an Empty space, move onto and collect a Lambda, push Rocks, and enter an Open
Lambda Lift. Rocks will fall if they are not supported by another object.

2.2 Robot Movement

In each step, the Robot executes a command, then the mine layout is updated. Commands which the
Robot can execute are:

• Move left, L, moving the Robot from (x, y) to (x� 1, y).

• Move right, R, moving the Robot from (x, y) to (x+ 1, y).

• Move up, U, moving the Robot from (x, y) to (x, y + 1).

• Move down, D, moving the Robot from (x, y) to (x, y � 1).

• Wait, W, which does nothing.

• Abort, A, which abandons mine exploration.

Moving from a location (x, y) to a new location (x0, y0) is valid if:

• (x0, y0) is Empty, Earth, Lambda or Open Lambda Lift.

– If it is a Lambda, that Lambda is collected.
– If it is an Open Lambda Lift, the mine is completed.

• If x0 = x+ 1 and y0 = y (i.e. the Robot moves right), (x0, y0) is a Rock, and (x+ 2, y) is Empty.

– Additionally, the Rock moves to (x+ 2, y).

• If x0 = x� 1 and y0 = y (i.e. the Robot moves left), (x0, y0) is a Rock, and (x� 2, y) is Empty.

– Additionally, the Rock moves to (x� 2, y).

In all other situations, a move is invalid, and the Robot instead executes Wait. After a successful move,
the grid location (x, y) becomes Empty.

2

2.1 Mine layout

A mine is an n ⇥m grid of cells, with the convention that (1, 1) is the bottom left and (n,m) is the top

right. Each cell contains one of the following:

Mining Robot (R in ASCII) Wall (# in ASCII)

Rock (* in ASCII) Lambda (\ in ASCII)

Closed Lambda Lift (L in ASCII) Open Lambda Lift (O in ASCII)

Earth (. in ASCII) Empty ([SPACE] in ASCII)

Nothing can pass through a Wall, or outside the n⇥m grid of the mine. The mining Robot can excavate
Earth, move into an Empty space, move onto and collect a Lambda, push Rocks, and enter an Open
Lambda Lift. Rocks will fall if they are not supported by another object.

2.2 Robot Movement

In each step, the Robot executes a command, then the mine layout is updated. Commands which the
Robot can execute are:

• Move left, L, moving the Robot from (x, y) to (x� 1, y).

• Move right, R, moving the Robot from (x, y) to (x+ 1, y).

• Move up, U, moving the Robot from (x, y) to (x, y + 1).

• Move down, D, moving the Robot from (x, y) to (x, y � 1).

• Wait, W, which does nothing.

• Abort, A, which abandons mine exploration.

Moving from a location (x, y) to a new location (x0, y0) is valid if:

• (x0, y0) is Empty, Earth, Lambda or Open Lambda Lift.

– If it is a Lambda, that Lambda is collected.
– If it is an Open Lambda Lift, the mine is completed.

• If x0 = x+ 1 and y0 = y (i.e. the Robot moves right), (x0, y0) is a Rock, and (x+ 2, y) is Empty.

– Additionally, the Rock moves to (x+ 2, y).

• If x0 = x� 1 and y0 = y (i.e. the Robot moves left), (x0, y0) is a Rock, and (x� 2, y) is Empty.

– Additionally, the Rock moves to (x� 2, y).

In all other situations, a move is invalid, and the Robot instead executes Wait. After a successful move,
the grid location (x, y) becomes Empty.

2

2.1 Mine layout

A mine is an n ⇥m grid of cells, with the convention that (1, 1) is the bottom left and (n,m) is the top

right. Each cell contains one of the following:

Mining Robot (R in ASCII) Wall (# in ASCII)

Rock (* in ASCII) Lambda (\ in ASCII)

Closed Lambda Lift (L in ASCII) Open Lambda Lift (O in ASCII)

Earth (. in ASCII) Empty ([SPACE] in ASCII)

Nothing can pass through a Wall, or outside the n⇥m grid of the mine. The mining Robot can excavate
Earth, move into an Empty space, move onto and collect a Lambda, push Rocks, and enter an Open
Lambda Lift. Rocks will fall if they are not supported by another object.

2.2 Robot Movement

In each step, the Robot executes a command, then the mine layout is updated. Commands which the
Robot can execute are:

• Move left, L, moving the Robot from (x, y) to (x� 1, y).

• Move right, R, moving the Robot from (x, y) to (x+ 1, y).

• Move up, U, moving the Robot from (x, y) to (x, y + 1).

• Move down, D, moving the Robot from (x, y) to (x, y � 1).

• Wait, W, which does nothing.

• Abort, A, which abandons mine exploration.

Moving from a location (x, y) to a new location (x0, y0) is valid if:

• (x0, y0) is Empty, Earth, Lambda or Open Lambda Lift.

– If it is a Lambda, that Lambda is collected.
– If it is an Open Lambda Lift, the mine is completed.

• If x0 = x+ 1 and y0 = y (i.e. the Robot moves right), (x0, y0) is a Rock, and (x+ 2, y) is Empty.

– Additionally, the Rock moves to (x+ 2, y).

• If x0 = x� 1 and y0 = y (i.e. the Robot moves left), (x0, y0) is a Rock, and (x� 2, y) is Empty.

– Additionally, the Rock moves to (x� 2, y).

In all other situations, a move is invalid, and the Robot instead executes Wait. After a successful move,
the grid location (x, y) becomes Empty.

2

2.1 Mine layout

A mine is an n ⇥m grid of cells, with the convention that (1, 1) is the bottom left and (n,m) is the top

right. Each cell contains one of the following:

Mining Robot (R in ASCII) Wall (# in ASCII)

Rock (* in ASCII) Lambda (\ in ASCII)

Closed Lambda Lift (L in ASCII) Open Lambda Lift (O in ASCII)

Earth (. in ASCII) Empty ([SPACE] in ASCII)

Nothing can pass through a Wall, or outside the n⇥m grid of the mine. The mining Robot can excavate
Earth, move into an Empty space, move onto and collect a Lambda, push Rocks, and enter an Open
Lambda Lift. Rocks will fall if they are not supported by another object.

2.2 Robot Movement

In each step, the Robot executes a command, then the mine layout is updated. Commands which the
Robot can execute are:

• Move left, L, moving the Robot from (x, y) to (x� 1, y).

• Move right, R, moving the Robot from (x, y) to (x+ 1, y).

• Move up, U, moving the Robot from (x, y) to (x, y + 1).

• Move down, D, moving the Robot from (x, y) to (x, y � 1).

• Wait, W, which does nothing.

• Abort, A, which abandons mine exploration.

Moving from a location (x, y) to a new location (x0, y0) is valid if:

• (x0, y0) is Empty, Earth, Lambda or Open Lambda Lift.

– If it is a Lambda, that Lambda is collected.
– If it is an Open Lambda Lift, the mine is completed.

• If x0 = x+ 1 and y0 = y (i.e. the Robot moves right), (x0, y0) is a Rock, and (x+ 2, y) is Empty.

– Additionally, the Rock moves to (x+ 2, y).

• If x0 = x� 1 and y0 = y (i.e. the Robot moves left), (x0, y0) is a Rock, and (x� 2, y) is Empty.

– Additionally, the Rock moves to (x� 2, y).

In all other situations, a move is invalid, and the Robot instead executes Wait. After a successful move,
the grid location (x, y) becomes Empty.

2

2017: Lambda-Punting

2019: Bit Rotting Problem

• What shall we do with all the legacy code?

• We need to dispose the bit-rotten software…

• Let us use empty mines as waste silos!

ICFP Programming Contest 2019

Worker-Wrappers against Bit Rot
Version 1.0

ICFP Programming Contest Organisers

June 21, 2019, 10:00am UTC

1 Introduction
With the tremendous success of functional programming in industry, it has been projected that by
the year 2030 most of the code in the world will be written in functional languages using lambdas.

To cater to the growing need for lambdas, in 2012 the ICFP contest participants have developed
procedures for lifting this precious resource from mines in Scotland.1 Since then, lambdas have
been excavated frommines all over the world, and in 2017, ICFP contestants came up with optimal
ways to deliver lambdas to users via advanced punting strategies.2

The accelerated mining and delivery of lambdas allowed us to
get rid of most legacy code — the infamous bit rotting problemwas
solved once and for all. However, eliminating legacy code creates
a new problem: how to dispose of all the bit-rotten software? A
plan has been devised to store it in the empty mines the lambdas
were originally extracted from, which can now be converted into
legacy waste silos.

To prevent bit rot from seeping into the soil, the mines, before
they are turned into silos, need to be insulated by wrapping their
entire surface in a decay-containing substance. To perform this
task, scientists have designed robots called worker-wrappers. This year, we ask the ICFP commu-
nity to help dispose of bit-rotten software by programming worker-wrappers. The goal of this
contest is to determine, for a number of empty mines, the most e�cient way to insulate them.

1.1 Contest Speci�cation Updates
We expect the insulation demand to grow over the course of the contest, hence, the teams should
expect some updates during the next 72 hours. Speci�cation re�nements will be made available at
the following times:

• First update: June 21, 5:00pm UTC (7 hours into the contest)
• Second update: June 22, 0:00am UTC (14 hours into the contest)
• Third update: June 22, 10:01am UTC (immediately after the end of Lightning Division)

The details of the updates will be announced online in the following ways:

• via the contest website: https://icfpcontest2019.github.io
• in the contest Twitter account: @icfpcontest2019.

1https://icfpcontest2012.wordpress.com
2https://icfpcontest2017.github.io

1

Preventing Bit-Rot from Spreading

Wrapping the surface of mines in a decay-containing substance.

Figure 1: A map with two obstacles and a partial route of a worker-wrapper. The walls and solid
obstacles are shown in dark color. The position of the worker-wrapper’s body is depicted by a red
dot; dark yellow squares show the current reach of its manipulators, while the light yellow squares
show the parts of the surface that are already wrapped.

2 Maps and Worker-Wrapper Navigation
We have acquired a number of maps of mines that can be turned into silos for legacy code. Each
map represents a single worker-wrapper task. The boundary of a map is encoded as a rectilinear
polygon, described by the list of its vertices with non-negative integer coordinates. The list of
vertices, therefore, de�nes the boundary of a map that is located “on the left” with respect to the
direction induced by traversing the list.

The body of a worker-wrapper occupies a 1⇥1 square on the surface of the map, and its current
position is described as the coordinates of the square’s bottom-left corner. The initial position of
the worker-wrapper is explicitly speci�ed for each task. A map may contain a number of solid
obstacles; each obstacle is encoded similarly to how the map is encoded. The obstacles do not
touch each other or the boundary of the map, therefore, the worker-wrapper can reach any point
within the mine that is not occupied by an obstacle.

An example of a 10 ⇥ 10 map with two obstacles is shown in Figure 1. The boundary of the
map is de�ned by the list of vertices [(0, 0), (10, 0), (10, 10), (0, 10)], while the obstacles are de�ned
by the lists [(4, 2), (6, 2), (6, 7), (4, 7)] and [(5, 8), (6, 8), (6, 9), (5, 9)], correspondingly.

2.1 Basic navigation and wrapping rules
A standard worker-wrapper modelWrappy-2019 (shown
on the right) is shipped with three universal foldable
robotic manipulators that are attached to its body and al-
low it to perform wrapping. Each robotic manipulator can
wrap one 1 ⇥ 1 square of surface within its reach. Once
a square is touched by a manipulator or the body of the
worker-wrapper, it is considered wrapped. In order to
cover the entire surface, at each unit of time the worker-
wrapper can perform one of the following actions:

• move to an adjacent square of the surface,
• turn 90°, changing the relative position of its manipulators with respect to its body,
• do nothing.

The initial con�guration of the manipulators is always the same and is described by the squares
with coordinates [(x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], where (x ,�) is the location of the worker-

2

Worker-Wrapper 2019
(aka Wrappy)

The Task
For a given map, give a Wrappy trace to cover the entire surface,  

while minimising a number of steps.

Figure 1: A map with two obstacles and a partial route of a worker-wrapper. The walls and solid
obstacles are shown in dark color. The position of the worker-wrapper’s body is depicted by a red
dot; dark yellow squares show the current reach of its manipulators, while the light yellow squares
show the parts of the surface that are already wrapped.

2 Maps and Worker-Wrapper Navigation
We have acquired a number of maps of mines that can be turned into silos for legacy code. Each
map represents a single worker-wrapper task. The boundary of a map is encoded as a rectilinear
polygon, described by the list of its vertices with non-negative integer coordinates. The list of
vertices, therefore, de�nes the boundary of a map that is located “on the left” with respect to the
direction induced by traversing the list.

The body of a worker-wrapper occupies a 1⇥1 square on the surface of the map, and its current
position is described as the coordinates of the square’s bottom-left corner. The initial position of
the worker-wrapper is explicitly speci�ed for each task. A map may contain a number of solid
obstacles; each obstacle is encoded similarly to how the map is encoded. The obstacles do not
touch each other or the boundary of the map, therefore, the worker-wrapper can reach any point
within the mine that is not occupied by an obstacle.

An example of a 10 ⇥ 10 map with two obstacles is shown in Figure 1. The boundary of the
map is de�ned by the list of vertices [(0, 0), (10, 0), (10, 10), (0, 10)], while the obstacles are de�ned
by the lists [(4, 2), (6, 2), (6, 7), (4, 7)] and [(5, 8), (6, 8), (6, 9), (5, 9)], correspondingly.

2.1 Basic navigation and wrapping rules
A standard worker-wrapper modelWrappy-2019 (shown
on the right) is shipped with three universal foldable
robotic manipulators that are attached to its body and al-
low it to perform wrapping. Each robotic manipulator can
wrap one 1 ⇥ 1 square of surface within its reach. Once
a square is touched by a manipulator or the body of the
worker-wrapper, it is considered wrapped. In order to
cover the entire surface, at each unit of time the worker-
wrapper can perform one of the following actions:

• move to an adjacent square of the surface,
• turn 90°, changing the relative position of its manipulators with respect to its body,
• do nothing.

The initial con�guration of the manipulators is always the same and is described by the squares
with coordinates [(x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], where (x ,�) is the location of the worker-

2

The Rules

• Wrappy has three manipulators

• It can move in four directions  
(but not through the walls).

• Wrappy can turn around

• Manipulators can fold an unfold in
narrow parts of a map.

DDDDDDDQWWWWWWWWEDDESSSSSSSAAAAAAEEWWWWWWDDAWWDASQAAAQSSSSSSS

Sounds too Easy?

Lambda-miners left some stuff behind…

Let’s see if we can use it

Manipulator Extension

• Wrappy attach an an additional
robotic hand, extending its range

• Permanent effect

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters
Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B
E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,�), and with its manipulators
it can reach positions [(x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], a new manipulator can be
attached at relative positions (1, 2), (�1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,�), (x+1,�), (x+
1,� + 1), (x + 1,� � 1), (x + 1,� + 2)], and if another manipulator is then attached at (�1, 0), it will
be able reach positions [(x � 1,�), (x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1), (x + 1,� + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F
E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfor-
tunately fast wheels also wear o� fast, and their e�ect only
lasts for 50 units of time. Using a new pair of fast wheels
while a pair is already active extends the e�ect for up to addi-
tional 50 units of time (i.e., for themaximum of the remaining
durations, not their sum) without increasing the speed any further.

3

Manipulator Extension

• Wrappy attach an an additional
robotic hand, extending its range

• Permanent effect

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters
Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B
E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,�), and with its manipulators
it can reach positions [(x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], a new manipulator can be
attached at relative positions (1, 2), (�1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,�), (x+1,�), (x+
1,� + 1), (x + 1,� � 1), (x + 1,� + 2)], and if another manipulator is then attached at (�1, 0), it will
be able reach positions [(x � 1,�), (x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1), (x + 1,� + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F
E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfor-
tunately fast wheels also wear o� fast, and their e�ect only
lasts for 50 units of time. Using a new pair of fast wheels
while a pair is already active extends the e�ect for up to addi-
tional 50 units of time (i.e., for themaximum of the remaining
durations, not their sum) without increasing the speed any further.

3

Fast Wheels

• Wrappy moves twice as fast
when stepping in either direction

• Effect lasts for 50 time units

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters
Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B
E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,�), and with its manipulators
it can reach positions [(x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], a new manipulator can be
attached at relative positions (1, 2), (�1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,�), (x+1,�), (x+
1,� + 1), (x + 1,� � 1), (x + 1,� + 2)], and if another manipulator is then attached at (�1, 0), it will
be able reach positions [(x � 1,�), (x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1), (x + 1,� + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F
E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfor-
tunately fast wheels also wear o� fast, and their e�ect only
lasts for 50 units of time. Using a new pair of fast wheels
while a pair is already active extends the e�ect for up to addi-
tional 50 units of time (i.e., for themaximum of the remaining
durations, not their sum) without increasing the speed any further.

3

Fast Wheels

• Wrappy moves twice as fast
when stepping in either direction

• Effect lasts for 50 time units

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters
Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B
E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,�), and with its manipulators
it can reach positions [(x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], a new manipulator can be
attached at relative positions (1, 2), (�1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,�), (x+1,�), (x+
1,� + 1), (x + 1,� � 1), (x + 1,� + 2)], and if another manipulator is then attached at (�1, 0), it will
be able reach positions [(x � 1,�), (x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1), (x + 1,� + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F
E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfor-
tunately fast wheels also wear o� fast, and their e�ect only
lasts for 50 units of time. Using a new pair of fast wheels
while a pair is already active extends the e�ect for up to addi-
tional 50 units of time (i.e., for themaximum of the remaining
durations, not their sum) without increasing the speed any further.

3

Drill

• Wrappy can make tunnels in
walls and obstacles

• Effect lasts for 30 time units

2.2.3 Drill

Code: L
E�ect: Using a drill booster allows a worker-wrapper to
move through obstacles and even walls of the mine, creat-
ing tunnels of 1 square width. However, the drill cannot be
used to move beyond the bounding box of the map (i.e., to
the locations with coordinates that are negative or exceed the
maximalX/Y -coordinate of the map’s vertices). Once started,
the drill remains active for 30 units of time, after which it
wears o�. The e�ect of using a second drill with one already
activated follows the same rules as when using a second pair
of fast wheels.

The drill booster can be used in combination with fast
wheels and vice versa.

2.2.4 Mysterious Point

Code: X

E�ect: The e�ect of this booster is currently unknown. Furthermore, it seems that it cannot be
collected: the points on the map marked with this code contain some strange devices that are
�rmly mounted to the rock surface. Perhaps their purpose will become clear later.

2.2.5 Using boosters

Using each booster takes one time unit, during which the worker-wrapper cannot perform another
action. Once the booster is used, it is considered spent and cannot be used again.

2.3 Rules of manipulator reachability
Worker-wrapper’s manipulators are highly �exible, but have a limited reach, which should be
taken into the account when calculating the solution. For instance, obstacles and corners of the
mine can block them from reaching certain squares. According to the worker-wrapper speci�ca-
tion, a square of surface can only be reached by a manipulator if its centre is visible from the centre
of the square, corresponding to the location of the worker-wrapper’s body. A point is considered
visible from another if it can be connected by a straight segment without intersecting the sides of
walls and obstacles (touching corners is allowed). Figure 2 shows an example of squares within
and outside the reach of a worker-wrapper with an extended set of manipulators.

4

Drill

• Wrappy can make tunnels in
walls and obstacles

• Effect lasts for 30 time units

2.2.3 Drill

Code: L
E�ect: Using a drill booster allows a worker-wrapper to
move through obstacles and even walls of the mine, creat-
ing tunnels of 1 square width. However, the drill cannot be
used to move beyond the bounding box of the map (i.e., to
the locations with coordinates that are negative or exceed the
maximalX/Y -coordinate of the map’s vertices). Once started,
the drill remains active for 30 units of time, after which it
wears o�. The e�ect of using a second drill with one already
activated follows the same rules as when using a second pair
of fast wheels.

The drill booster can be used in combination with fast
wheels and vice versa.

2.2.4 Mysterious Point

Code: X

E�ect: The e�ect of this booster is currently unknown. Furthermore, it seems that it cannot be
collected: the points on the map marked with this code contain some strange devices that are
�rmly mounted to the rock surface. Perhaps their purpose will become clear later.

2.2.5 Using boosters

Using each booster takes one time unit, during which the worker-wrapper cannot perform another
action. Once the booster is used, it is considered spent and cannot be used again.

2.3 Rules of manipulator reachability
Worker-wrapper’s manipulators are highly �exible, but have a limited reach, which should be
taken into the account when calculating the solution. For instance, obstacles and corners of the
mine can block them from reaching certain squares. According to the worker-wrapper speci�ca-
tion, a square of surface can only be reached by a manipulator if its centre is visible from the centre
of the square, corresponding to the location of the worker-wrapper’s body. A point is considered
visible from another if it can be connected by a straight segment without intersecting the sides of
walls and obstacles (touching corners is allowed). Figure 2 shows an example of squares within
and outside the reach of a worker-wrapper with an extended set of manipulators.

4

Mysterious Points

• The purpose is unknown (so far)

2.2.3 Drill

Code: L
E�ect: Using a drill booster allows a worker-wrapper to
move through obstacles and even walls of the mine, creat-
ing tunnels of 1 square width. However, the drill cannot be
used to move beyond the bounding box of the map (i.e., to
the locations with coordinates that are negative or exceed the
maximalX/Y -coordinate of the map’s vertices). Once started,
the drill remains active for 30 units of time, after which it
wears o�. The e�ect of using a second drill with one already
activated follows the same rules as when using a second pair
of fast wheels.

The drill booster can be used in combination with fast
wheels and vice versa.

2.2.4 Mysterious Point

Code: X

E�ect: The e�ect of this booster is currently unknown. Furthermore, it seems that it cannot be
collected: the points on the map marked with this code contain some strange devices that are
�rmly mounted to the rock surface. Perhaps their purpose will become clear later.

2.2.5 Using boosters

Using each booster takes one time unit, during which the worker-wrapper cannot perform another
action. Once the booster is used, it is considered spent and cannot be used again.

2.3 Rules of manipulator reachability
Worker-wrapper’s manipulators are highly �exible, but have a limited reach, which should be
taken into the account when calculating the solution. For instance, obstacles and corners of the
mine can block them from reaching certain squares. According to the worker-wrapper speci�ca-
tion, a square of surface can only be reached by a manipulator if its centre is visible from the centre
of the square, corresponding to the location of the worker-wrapper’s body. A point is considered
visible from another if it can be connected by a straight segment without intersecting the sides of
walls and obstacles (touching corners is allowed). Figure 2 shows an example of squares within
and outside the reach of a worker-wrapper with an extended set of manipulators.

4

Initial Task

• 150 maps with boosters of different kinds

• Solution is a zip-file with Wrappy traces (text files)

• The shorter the traces, the better

If you are submitting via cURL, make sure there is no trailing slash after the submission URL.

Each team may only submit their solution once every 10 minutes.

To be considered for prizes, within two hours of the end of the contest, teams must update their
pro�le with complete team information and submit a single .zip archive with their source code,
a README.txt �le (brief directions for judges to build/run the solution; description of the solu-
tion approach; feedback about the contest; self-nomination for judges’ prize; etc), and any other
supporting materials. This can be done at:

https://icfpcontest2019.github.io/profile/

3.5 Scoring
The team’s score scoreteam,T for a task T , for which a valid solution is provided, is computed as

scoreteam,T ,
⇠
1000 ⇥ log2 (XT ⇥ YT) ⇥

tbest
tteam

⇡
,

whereXT andYT are the maximal x/�-dimensions ofT ’s map, tteam is a number of time units taken
by the team’s solution, and tbest is the minimum wrapping time among all teams’ corresponding
submitted solutions. Tasks for which a solution is not provided or is not valid yield a score 0.

3.6 Lightning Division
As traditional, the contest will have a Lightning Division spanning the �rst 24 hours. To be nom-
inated for the Lightning Division prize, submit your solutions by June 22, 2019, 10:00am UTC.

3.7 Determining the Winner
We will use the same procedure to determine the winner in both the lightning and full divisions,
ranking the teams by cumulative score, computed as the sum of scores for each task.

3.8 Live Standings
The Live Standings for the contest will be available at

https://icfpcontest2019.github.io/rankings/

The results of the live standings will be frozen one hour prior to the end of the Lightning Division.
They will resume being updated starting June 22, 2019, 1:00pm UTC, and will be frozen again
three hours prior the end of the contest.

3.9 The Judges’ Prize
The judges’ prize will be picked by the contest organisers. All entries in both the full and lightning
divisions are eligible for the judges’ prize.

Good luck, and happy wrapping!

7

The Maps

30 x 30 50 x 50

The Maps

100 x 100 200 x 200

The Maps

100 x 100 200 x 200

ICFP 2016

More Maps

More Maps

Extensions

Teleports

• Wrappy can set up a beacon at any non-wall
location on a map

• It can teleport to the beacon from any point
• Can do as many teleportations as necessary

7 hours into the contest

ICFP Programming Contest 2019

Taking Control with Teleports
Version 1.0

ICFP Programming Contest Organisers

June 21, 2019, 5:00pm UTC

A new pack of maps has been delivered to us, and we still need your help to navigate the worker-
wrapper. These new maps feature a new kind of booster, which might prove useful.

New booster: Teleports

Code: R

E�ect: This booster uses cutting-edge technology to take control over the worker-wrapper’s
movement in space, by using two commands: shift and reset. The reset command must be exe-
cuted �rst; it requires a worker-wrapper to spend the booster, permanently installing a teleport
beacon at the present location of the worker-wrapper. Once this is done, the shift operation can be
invoked from any location on the map, and, provided the coordinates of the previously installed
teleport beacon, will immediately move the worker-wrapper back to the beacon location. Telepor-
tation via shift takes one unit of time and can be performed an arbitrary number of times. One
can install as many teleports as one has boosters. New teleports cannot be created in locations
containing previously installed teleports or mysterious points (X).

Extended task format

BoosterCode ::= . . . | R

Extended solution format

action ::= . . .

| R (perform reset operation to install a beacon)
| T(x ,�) (perform shift to the location (x ,�) with the previously installed beacon)

1

• Wrappy can set up a beacon at any non-wall
location on a map

• It can teleport to the beacon from any point
• Can do as many teleportations as necessary

ICFP Programming Contest 2019

Taking Control with Teleports
Version 1.0

ICFP Programming Contest Organisers

June 21, 2019, 5:00pm UTC

A new pack of maps has been delivered to us, and we still need your help to navigate the worker-
wrapper. These new maps feature a new kind of booster, which might prove useful.

New booster: Teleports

Code: R

E�ect: This booster uses cutting-edge technology to take control over the worker-wrapper’s
movement in space, by using two commands: shift and reset. The reset command must be exe-
cuted �rst; it requires a worker-wrapper to spend the booster, permanently installing a teleport
beacon at the present location of the worker-wrapper. Once this is done, the shift operation can be
invoked from any location on the map, and, provided the coordinates of the previously installed
teleport beacon, will immediately move the worker-wrapper back to the beacon location. Telepor-
tation via shift takes one unit of time and can be performed an arbitrary number of times. One
can install as many teleports as one has boosters. New teleports cannot be created in locations
containing previously installed teleports or mysterious points (X).

Extended task format

BoosterCode ::= . . . | R

Extended solution format

action ::= . . .

| R (perform reset operation to install a beacon)
| T(x ,�) (perform shift to the location (x ,�) with the previously installed beacon)

1

Teleports
7 hours into the contest

Clones

• Can create a clone at one of  
the “mystery points”

• Clones can do the wrapping independently
• Collected boosters are shared between all clones

14 hours into the contest

ICFP Programming Contest 2019

Parallel Wrapping
Version 1.0

ICFP Programming Contest Organisers

June 22, 2019, 0:00am UTC

The sizes of themaps that needwrapping grow larger, and our worker-wrapper could use some
help. This is made possible in a new pack of maps featuring a new kind of booster and revealing
the purpose of the mysterious points from the previous tasks.

New booster: Cloning

Code: C

E�ect: With this booster, a worker-wrapper can replicate itself by creating a replica. Unfortu-
nately, the support for the cloning technology is still not very mature, and the cloning booster
can be only used in designated spawn points, marked on a map with the code X. A replica of a
worker-wrapper created this way acts independently of its original and may create more replicas
using the cloning boosters, thus providing parallel wrapping speed-up. Boosters collected by any
replica are immediately available to use by any other worker-wrapper, with the e�ect applied to
the user only.

Several worker-wrappers may occupy the same location. Cloning takes one time unit, and
the created replica starts acting from the next turn from the location of the used spawn point. If
several worker-wrapper replicas exist concurrently, they make their steps in the same time unit,
in the order they were spawned.

Extended task format

BoosterCode ::= . . . | C

Extended solution format

A solution can now provide a non-empty list of routes for each worker-wrapper replica, separated
by #. The next route from the list is assigned to a newly created replica according to the spawning
order. The ends of the routes don’t have to be aligned: if one replica exhausts its route description
early, it will simply wait until all other worker-wrappers �nish their executions.

1

Clones

• Can create a clone at one of  
the “mystery points”

• Clones can do the wrapping independently
• Collected boosters are shared between all clones

ICFP Programming Contest 2019

Parallel Wrapping
Version 1.0

ICFP Programming Contest Organisers

June 22, 2019, 0:00am UTC

The sizes of themaps that needwrapping grow larger, and our worker-wrapper could use some
help. This is made possible in a new pack of maps featuring a new kind of booster and revealing
the purpose of the mysterious points from the previous tasks.

New booster: Cloning

Code: C

E�ect: With this booster, a worker-wrapper can replicate itself by creating a replica. Unfortu-
nately, the support for the cloning technology is still not very mature, and the cloning booster
can be only used in designated spawn points, marked on a map with the code X. A replica of a
worker-wrapper created this way acts independently of its original and may create more replicas
using the cloning boosters, thus providing parallel wrapping speed-up. Boosters collected by any
replica are immediately available to use by any other worker-wrapper, with the e�ect applied to
the user only.

Several worker-wrappers may occupy the same location. Cloning takes one time unit, and
the created replica starts acting from the next turn from the location of the used spawn point. If
several worker-wrapper replicas exist concurrently, they make their steps in the same time unit,
in the order they were spawned.

Extended task format

BoosterCode ::= . . . | C

Extended solution format

A solution can now provide a non-empty list of routes for each worker-wrapper replica, separated
by #. The next route from the list is assigned to a newly created replica according to the spawning
order. The ends of the routes don’t have to be aligned: if one replica exhausts its route description
early, it will simply wait until all other worker-wrappers �nish their executions.

1

14 hours into the contest

Extended Task

• 150 maps with boosters of different kinds

• Solution is a zip-file with Wrappy traces (text files)

• The shorter the traces, the better

If you are submitting via cURL, make sure there is no trailing slash after the submission URL.

Each team may only submit their solution once every 10 minutes.

To be considered for prizes, within two hours of the end of the contest, teams must update their
pro�le with complete team information and submit a single .zip archive with their source code,
a README.txt �le (brief directions for judges to build/run the solution; description of the solu-
tion approach; feedback about the contest; self-nomination for judges’ prize; etc), and any other
supporting materials. This can be done at:

https://icfpcontest2019.github.io/profile/

3.5 Scoring
The team’s score scoreteam,T for a task T , for which a valid solution is provided, is computed as

scoreteam,T ,
⇠
1000 ⇥ log2 (XT ⇥ YT) ⇥

tbest
tteam

⇡
,

whereXT andYT are the maximal x/�-dimensions ofT ’s map, tteam is a number of time units taken
by the team’s solution, and tbest is the minimum wrapping time among all teams’ corresponding
submitted solutions. Tasks for which a solution is not provided or is not valid yield a score 0.

3.6 Lightning Division
As traditional, the contest will have a Lightning Division spanning the �rst 24 hours. To be nom-
inated for the Lightning Division prize, submit your solutions by June 22, 2019, 10:00am UTC.

3.7 Determining the Winner
We will use the same procedure to determine the winner in both the lightning and full divisions,
ranking the teams by cumulative score, computed as the sum of scores for each task.

3.8 Live Standings
The Live Standings for the contest will be available at

https://icfpcontest2019.github.io/rankings/

The results of the live standings will be frozen one hour prior to the end of the Lightning Division.
They will resume being updated starting June 22, 2019, 1:00pm UTC, and will be frozen again
three hours prior the end of the contest.

3.9 The Judges’ Prize
The judges’ prize will be picked by the contest organisers. All entries in both the full and lightning
divisions are eligible for the judges’ prize.

Good luck, and happy wrapping!

7

Extended Task

• 150 300 maps with boosters of different kinds

• Solution is a zip-file with Wrappy traces (text files)

• The shorter the traces, the better

If you are submitting via cURL, make sure there is no trailing slash after the submission URL.

Each team may only submit their solution once every 10 minutes.

To be considered for prizes, within two hours of the end of the contest, teams must update their
pro�le with complete team information and submit a single .zip archive with their source code,
a README.txt �le (brief directions for judges to build/run the solution; description of the solu-
tion approach; feedback about the contest; self-nomination for judges’ prize; etc), and any other
supporting materials. This can be done at:

https://icfpcontest2019.github.io/profile/

3.5 Scoring
The team’s score scoreteam,T for a task T , for which a valid solution is provided, is computed as

scoreteam,T ,
⇠
1000 ⇥ log2 (XT ⇥ YT) ⇥

tbest
tteam

⇡
,

whereXT andYT are the maximal x/�-dimensions ofT ’s map, tteam is a number of time units taken
by the team’s solution, and tbest is the minimum wrapping time among all teams’ corresponding
submitted solutions. Tasks for which a solution is not provided or is not valid yield a score 0.

3.6 Lightning Division
As traditional, the contest will have a Lightning Division spanning the �rst 24 hours. To be nom-
inated for the Lightning Division prize, submit your solutions by June 22, 2019, 10:00am UTC.

3.7 Determining the Winner
We will use the same procedure to determine the winner in both the lightning and full divisions,
ranking the teams by cumulative score, computed as the sum of scores for each task.

3.8 Live Standings
The Live Standings for the contest will be available at

https://icfpcontest2019.github.io/rankings/

The results of the live standings will be frozen one hour prior to the end of the Lightning Division.
They will resume being updated starting June 22, 2019, 1:00pm UTC, and will be frozen again
three hours prior the end of the contest.

3.9 The Judges’ Prize
The judges’ prize will be picked by the contest organisers. All entries in both the full and lightning
divisions are eligible for the judges’ prize.

Good luck, and happy wrapping!

7

More Maps

200 x 200 400 x 400

Provided Infrastructure
• Solution is a zip-file with Wrappy traces (text files)

• curl -F “private_id=34fbde"\  
-F "file=@solutions.zip" \  
https://monadic-lab.org/submit

• A JavaScript visualiser (running in the browser)

• Live Rankings (updated every five minutes)

• A very crappy reference solver (not released)

https://monadic-lab.org/submit

And with that we finished  
the Lightning Division…

… but what kind of  
ICFP Contest would that be  

without a twist?

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters
Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B
E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,�), and with its manipulators
it can reach positions [(x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], a new manipulator can be
attached at relative positions (1, 2), (�1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,�), (x+1,�), (x+
1,� + 1), (x + 1,� � 1), (x + 1,� + 2)], and if another manipulator is then attached at (�1, 0), it will
be able reach positions [(x � 1,�), (x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1), (x + 1,� + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F
E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfor-
tunately fast wheels also wear o� fast, and their e�ect only
lasts for 50 units of time. Using a new pair of fast wheels
while a pair is already active extends the e�ect for up to addi-
tional 50 units of time (i.e., for themaximum of the remaining
durations, not their sum) without increasing the speed any further.

3

ICFP Programming Contest 2019

Parallel Wrapping
Version 1.0

ICFP Programming Contest Organisers

June 22, 2019, 0:00am UTC

The sizes of themaps that needwrapping grow larger, and our worker-wrapper could use some
help. This is made possible in a new pack of maps featuring a new kind of booster and revealing
the purpose of the mysterious points from the previous tasks.

New booster: Cloning

Code: C

E�ect: With this booster, a worker-wrapper can replicate itself by creating a replica. Unfortu-
nately, the support for the cloning technology is still not very mature, and the cloning booster
can be only used in designated spawn points, marked on a map with the code X. A replica of a
worker-wrapper created this way acts independently of its original and may create more replicas
using the cloning boosters, thus providing parallel wrapping speed-up. Boosters collected by any
replica are immediately available to use by any other worker-wrapper, with the e�ect applied to
the user only.

Several worker-wrappers may occupy the same location. Cloning takes one time unit, and
the created replica starts acting from the next turn from the location of the used spawn point. If
several worker-wrapper replicas exist concurrently, they make their steps in the same time unit,
in the order they were spawned.

Extended task format

BoosterCode ::= . . . | C

Extended solution format

A solution can now provide a non-empty list of routes for each worker-wrapper replica, separated
by #. The next route from the list is assigned to a newly created replica according to the spawning
order. The ends of the routes don’t have to be aligned: if one replica exhausts its route description
early, it will simply wait until all other worker-wrappers �nish their executions.

1

ICFP Programming Contest 2019

Taking Control with Teleports
Version 1.0

ICFP Programming Contest Organisers

June 21, 2019, 5:00pm UTC

A new pack of maps has been delivered to us, and we still need your help to navigate the worker-
wrapper. These new maps feature a new kind of booster, which might prove useful.

New booster: Teleports

Code: R

E�ect: This booster uses cutting-edge technology to take control over the worker-wrapper’s
movement in space, by using two commands: shift and reset. The reset command must be exe-
cuted �rst; it requires a worker-wrapper to spend the booster, permanently installing a teleport
beacon at the present location of the worker-wrapper. Once this is done, the shift operation can be
invoked from any location on the map, and, provided the coordinates of the previously installed
teleport beacon, will immediately move the worker-wrapper back to the beacon location. Telepor-
tation via shift takes one unit of time and can be performed an arbitrary number of times. One
can install as many teleports as one has boosters. New teleports cannot be created in locations
containing previously installed teleports or mysterious points (X).

Extended task format

BoosterCode ::= . . . | R

Extended solution format

action ::= . . .

| R (perform reset operation to install a beacon)
| T(x ,�) (perform shift to the location (x ,�) with the previously installed beacon)

1

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters
Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B
E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,�), and with its manipulators
it can reach positions [(x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], a new manipulator can be
attached at relative positions (1, 2), (�1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,�), (x+1,�), (x+
1,� + 1), (x + 1,� � 1), (x + 1,� + 2)], and if another manipulator is then attached at (�1, 0), it will
be able reach positions [(x � 1,�), (x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1), (x + 1,� + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F
E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfor-
tunately fast wheels also wear o� fast, and their e�ect only
lasts for 50 units of time. Using a new pair of fast wheels
while a pair is already active extends the e�ect for up to addi-
tional 50 units of time (i.e., for themaximum of the remaining
durations, not their sum) without increasing the speed any further.

3

2.2.3 Drill

Code: L
E�ect: Using a drill booster allows a worker-wrapper to
move through obstacles and even walls of the mine, creat-
ing tunnels of 1 square width. However, the drill cannot be
used to move beyond the bounding box of the map (i.e., to
the locations with coordinates that are negative or exceed the
maximalX/Y -coordinate of the map’s vertices). Once started,
the drill remains active for 30 units of time, after which it
wears o�. The e�ect of using a second drill with one already
activated follows the same rules as when using a second pair
of fast wheels.

The drill booster can be used in combination with fast
wheels and vice versa.

2.2.4 Mysterious Point

Code: X

E�ect: The e�ect of this booster is currently unknown. Furthermore, it seems that it cannot be
collected: the points on the map marked with this code contain some strange devices that are
�rmly mounted to the rock surface. Perhaps their purpose will become clear later.

2.2.5 Using boosters

Using each booster takes one time unit, during which the worker-wrapper cannot perform another
action. Once the booster is used, it is considered spent and cannot be used again.

2.3 Rules of manipulator reachability
Worker-wrapper’s manipulators are highly �exible, but have a limited reach, which should be
taken into the account when calculating the solution. For instance, obstacles and corners of the
mine can block them from reaching certain squares. According to the worker-wrapper speci�ca-
tion, a square of surface can only be reached by a manipulator if its centre is visible from the centre
of the square, corresponding to the location of the worker-wrapper’s body. A point is considered
visible from another if it can be connected by a straight segment without intersecting the sides of
walls and obstacles (touching corners is allowed). Figure 2 shows an example of squares within
and outside the reach of a worker-wrapper with an extended set of manipulators.

4

Figure 1: A map with two obstacles and a partial route of a worker-wrapper. The walls and solid
obstacles are shown in dark color. The position of the worker-wrapper’s body is depicted by a red
dot; dark yellow squares show the current reach of its manipulators, while the light yellow squares
show the parts of the surface that are already wrapped.

2 Maps and Worker-Wrapper Navigation
We have acquired a number of maps of mines that can be turned into silos for legacy code. Each
map represents a single worker-wrapper task. The boundary of a map is encoded as a rectilinear
polygon, described by the list of its vertices with non-negative integer coordinates. The list of
vertices, therefore, de�nes the boundary of a map that is located “on the left” with respect to the
direction induced by traversing the list.

The body of a worker-wrapper occupies a 1⇥1 square on the surface of the map, and its current
position is described as the coordinates of the square’s bottom-left corner. The initial position of
the worker-wrapper is explicitly speci�ed for each task. A map may contain a number of solid
obstacles; each obstacle is encoded similarly to how the map is encoded. The obstacles do not
touch each other or the boundary of the map, therefore, the worker-wrapper can reach any point
within the mine that is not occupied by an obstacle.

An example of a 10 ⇥ 10 map with two obstacles is shown in Figure 1. The boundary of the
map is de�ned by the list of vertices [(0, 0), (10, 0), (10, 10), (0, 10)], while the obstacles are de�ned
by the lists [(4, 2), (6, 2), (6, 7), (4, 7)] and [(5, 8), (6, 8), (6, 9), (5, 9)], correspondingly.

2.1 Basic navigation and wrapping rules
A standard worker-wrapper modelWrappy-2019 (shown
on the right) is shipped with three universal foldable
robotic manipulators that are attached to its body and al-
low it to perform wrapping. Each robotic manipulator can
wrap one 1 ⇥ 1 square of surface within its reach. Once
a square is touched by a manipulator or the body of the
worker-wrapper, it is considered wrapped. In order to
cover the entire surface, at each unit of time the worker-
wrapper can perform one of the following actions:

• move to an adjacent square of the surface,
• turn 90°, changing the relative position of its manipulators with respect to its body,
• do nothing.

The initial con�guration of the manipulators is always the same and is described by the squares
with coordinates [(x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], where (x ,�) is the location of the worker-

2

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters
Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B
E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,�), and with its manipulators
it can reach positions [(x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], a new manipulator can be
attached at relative positions (1, 2), (�1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,�), (x+1,�), (x+
1,� + 1), (x + 1,� � 1), (x + 1,� + 2)], and if another manipulator is then attached at (�1, 0), it will
be able reach positions [(x � 1,�), (x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1), (x + 1,� + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F
E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfor-
tunately fast wheels also wear o� fast, and their e�ect only
lasts for 50 units of time. Using a new pair of fast wheels
while a pair is already active extends the e�ect for up to addi-
tional 50 units of time (i.e., for themaximum of the remaining
durations, not their sum) without increasing the speed any further.

3

ICFP Programming Contest 2019

Parallel Wrapping
Version 1.0

ICFP Programming Contest Organisers

June 22, 2019, 0:00am UTC

The sizes of themaps that needwrapping grow larger, and our worker-wrapper could use some
help. This is made possible in a new pack of maps featuring a new kind of booster and revealing
the purpose of the mysterious points from the previous tasks.

New booster: Cloning

Code: C

E�ect: With this booster, a worker-wrapper can replicate itself by creating a replica. Unfortu-
nately, the support for the cloning technology is still not very mature, and the cloning booster
can be only used in designated spawn points, marked on a map with the code X. A replica of a
worker-wrapper created this way acts independently of its original and may create more replicas
using the cloning boosters, thus providing parallel wrapping speed-up. Boosters collected by any
replica are immediately available to use by any other worker-wrapper, with the e�ect applied to
the user only.

Several worker-wrappers may occupy the same location. Cloning takes one time unit, and
the created replica starts acting from the next turn from the location of the used spawn point. If
several worker-wrapper replicas exist concurrently, they make their steps in the same time unit,
in the order they were spawned.

Extended task format

BoosterCode ::= . . . | C

Extended solution format

A solution can now provide a non-empty list of routes for each worker-wrapper replica, separated
by #. The next route from the list is assigned to a newly created replica according to the spawning
order. The ends of the routes don’t have to be aligned: if one replica exhausts its route description
early, it will simply wait until all other worker-wrappers �nish their executions.

1

ICFP Programming Contest 2019

Taking Control with Teleports
Version 1.0

ICFP Programming Contest Organisers

June 21, 2019, 5:00pm UTC

A new pack of maps has been delivered to us, and we still need your help to navigate the worker-
wrapper. These new maps feature a new kind of booster, which might prove useful.

New booster: Teleports

Code: R

E�ect: This booster uses cutting-edge technology to take control over the worker-wrapper’s
movement in space, by using two commands: shift and reset. The reset command must be exe-
cuted �rst; it requires a worker-wrapper to spend the booster, permanently installing a teleport
beacon at the present location of the worker-wrapper. Once this is done, the shift operation can be
invoked from any location on the map, and, provided the coordinates of the previously installed
teleport beacon, will immediately move the worker-wrapper back to the beacon location. Telepor-
tation via shift takes one unit of time and can be performed an arbitrary number of times. One
can install as many teleports as one has boosters. New teleports cannot be created in locations
containing previously installed teleports or mysterious points (X).

Extended task format

BoosterCode ::= . . . | R

Extended solution format

action ::= . . .

| R (perform reset operation to install a beacon)
| T(x ,�) (perform shift to the location (x ,�) with the previously installed beacon)

1

2.2.3 Drill

Code: L
E�ect: Using a drill booster allows a worker-wrapper to
move through obstacles and even walls of the mine, creat-
ing tunnels of 1 square width. However, the drill cannot be
used to move beyond the bounding box of the map (i.e., to
the locations with coordinates that are negative or exceed the
maximalX/Y -coordinate of the map’s vertices). Once started,
the drill remains active for 30 units of time, after which it
wears o�. The e�ect of using a second drill with one already
activated follows the same rules as when using a second pair
of fast wheels.

The drill booster can be used in combination with fast
wheels and vice versa.

2.2.4 Mysterious Point

Code: X

E�ect: The e�ect of this booster is currently unknown. Furthermore, it seems that it cannot be
collected: the points on the map marked with this code contain some strange devices that are
�rmly mounted to the rock surface. Perhaps their purpose will become clear later.

2.2.5 Using boosters

Using each booster takes one time unit, during which the worker-wrapper cannot perform another
action. Once the booster is used, it is considered spent and cannot be used again.

2.3 Rules of manipulator reachability
Worker-wrapper’s manipulators are highly �exible, but have a limited reach, which should be
taken into the account when calculating the solution. For instance, obstacles and corners of the
mine can block them from reaching certain squares. According to the worker-wrapper speci�ca-
tion, a square of surface can only be reached by a manipulator if its centre is visible from the centre
of the square, corresponding to the location of the worker-wrapper’s body. A point is considered
visible from another if it can be connected by a straight segment without intersecting the sides of
walls and obstacles (touching corners is allowed). Figure 2 shows an example of squares within
and outside the reach of a worker-wrapper with an extended set of manipulators.

4

Figure 1: A map with two obstacles and a partial route of a worker-wrapper. The walls and solid
obstacles are shown in dark color. The position of the worker-wrapper’s body is depicted by a red
dot; dark yellow squares show the current reach of its manipulators, while the light yellow squares
show the parts of the surface that are already wrapped.

2 Maps and Worker-Wrapper Navigation
We have acquired a number of maps of mines that can be turned into silos for legacy code. Each
map represents a single worker-wrapper task. The boundary of a map is encoded as a rectilinear
polygon, described by the list of its vertices with non-negative integer coordinates. The list of
vertices, therefore, de�nes the boundary of a map that is located “on the left” with respect to the
direction induced by traversing the list.

The body of a worker-wrapper occupies a 1⇥1 square on the surface of the map, and its current
position is described as the coordinates of the square’s bottom-left corner. The initial position of
the worker-wrapper is explicitly speci�ed for each task. A map may contain a number of solid
obstacles; each obstacle is encoded similarly to how the map is encoded. The obstacles do not
touch each other or the boundary of the map, therefore, the worker-wrapper can reach any point
within the mine that is not occupied by an obstacle.

An example of a 10 ⇥ 10 map with two obstacles is shown in Figure 1. The boundary of the
map is de�ned by the list of vertices [(0, 0), (10, 0), (10, 10), (0, 10)], while the obstacles are de�ned
by the lists [(4, 2), (6, 2), (6, 7), (4, 7)] and [(5, 8), (6, 8), (6, 9), (5, 9)], correspondingly.

2.1 Basic navigation and wrapping rules
A standard worker-wrapper modelWrappy-2019 (shown
on the right) is shipped with three universal foldable
robotic manipulators that are attached to its body and al-
low it to perform wrapping. Each robotic manipulator can
wrap one 1 ⇥ 1 square of surface within its reach. Once
a square is touched by a manipulator or the body of the
worker-wrapper, it is considered wrapped. In order to
cover the entire surface, at each unit of time the worker-
wrapper can perform one of the following actions:

• move to an adjacent square of the surface,
• turn 90°, changing the relative position of its manipulators with respect to its body,
• do nothing.

The initial con�guration of the manipulators is always the same and is described by the squares
with coordinates [(x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], where (x ,�) is the location of the worker-

2

1000
700

300

20001300

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters
Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B
E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,�), and with its manipulators
it can reach positions [(x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], a new manipulator can be
attached at relative positions (1, 2), (�1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,�), (x+1,�), (x+
1,� + 1), (x + 1,� � 1), (x + 1,� + 2)], and if another manipulator is then attached at (�1, 0), it will
be able reach positions [(x � 1,�), (x ,�), (x + 1,�), (x + 1,� + 1), (x + 1,� � 1), (x + 1,� + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F
E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfor-
tunately fast wheels also wear o� fast, and their e�ect only
lasts for 50 units of time. Using a new pair of fast wheels
while a pair is already active extends the e�ect for up to addi-
tional 50 units of time (i.e., for themaximum of the remaining
durations, not their sum) without increasing the speed any further.

3

ICFP Programming Contest 2019

Lambda-coin and Lambda-chain
Version 2.0

ICFP Programming Contest Organisers

June 22, 2019, 10:01am UTC

In the past 24 hours, the ICFP contestants were very active on the Internet, discussing wrap-
ping, drilling, teleporting, and other contest-related activities. This has not gone unnoticed by e-
commerce providers, and as a result the contest organisers’ mailbox got overwhelmed with emails
entitled “Best Deals on Your Wrapping Gear” and similarly. Out of curiosity, we have checked
some of these emails and indeed found quite interesting deals, which we decided to share with the
contest participants:

Item Price (LAM)

Manipulator 1000
Fast Wheels 300
Drill 700
Teleport 1200
Cloning 2000

In the table above, the prices for the boosters are given in lambda-coins (LAM), the world’s
soon-to-be most popular and stable digital currency. The characteristic feature of lambda-coin
is that it is powered by Lambda-chain — a novel distributed consensus proto-
col that has been designed to be environmentally-friendly. In the past, digital
currencies were predominantly obtained by the energy-intense mining pro-
cess known as Proof-of-Work, which had no additional bene�ts besides mint-
ing coins, and was harming Earth’s atmosphere, accelerating global warming.
Since then, the scienti�c community managed to devise better protocols that
award digital currency for solving timely problems without harming the environment.

The Lambda-chainminingmechanism, being extremely versatile, can servemultiple purposes,
but at the moment, luckily for us, it has been set up (using a decentralised consensus mechanism),
to award lambda-coins for solving worker-wrapper problems via the patented scheme known as
Proof-of-Wrap®. While this activity is not mandatory for winning the contest, we encourage the
teams to take part in Lambda-chainmining. This is a great way to earn some lambda-coins, which
can be then used to buy boosters to improve the teams’ solutions for the main contest.

1 Proof-of-Wrap® in a Nutshell

In the Proof-of-Wrap® scheme for mining lambda-coins, the participants (a.k.a. miners) contribute
solutions to worker-wrapper tasks, while also proposing some tasks to solve. The mining protocol
is semi-synchronised and works in rounds. In each round, a new block problem is announced. A
block problem consists of the two components:

1

Lambda-Coin (LAM)

• Awarded for participating in the Lambda-chain protocol

• Lambda-chain mining is environmentally friendly

• By doing it, one helps to fight the Bit-Rot Problem

• Powered by a novel consensus protocol

2.4.1 Mining rounds

The protocol proceeds in semi-synchronised rounds, with each round corresponding to one block.
While round N is ongoing, teams can submit solutions to block N ’s task and puzzle via the
Lambda-chain client. A round ends when either:
• (normal deadline) at least 25 submissions have been received and 15 minutes have elapsed since
the block was created, OR

• (late deadline) 30 minutes have elapsed since the block was created
A team can make only one submission per round and submissions are �nal— if an incorrect

submission is made, it cannot be corrected. A submission is valid only if both the solution to the
block task and the solution to the block puzzle are valid.

Solutions are submitted as per the instructions provided in the client README.md of the client.

Final block. If at the end of the mining period, the last block in the chain has received at least
one submission, new submissions for this �nal blockwill still be accepted (despite themining period
having ended) until either the normal deadline or the late deadline for the block is reached. This
is to ensure a fair distribution of rewards.

2.4.2 Mining rewards

Each block has a bounty of 100,000 LAM which will be split among the teams with the 25 best
solutions for the corresponding block task (or the teams who made valid submissions by the late
deadline) proportionally to the quality of the solution. The quality of a solution is computed as
a fraction tbest

t , where t is a number of time units taken by the solution, and tbest is the minimum
time among all teams’ submitted solutions for this block task.

A task for the next block is chosen randomly from the block puzzle solutions provided by the
teams with top 10 ranked block task solutions. A teamwhose task is selected for the next block
is awarded an additional 2,000 LAM and is banned from participating in the next immediate round
of lambda-coin mining.

3 Lambda-Coins and the Contest Task Solutions
Teams can use lambda-coins earned by participating in the Lambda-chain protocol and accum-
mulated on their wallets to purchase boosters, which can be used in solutions for the main contest
tasks. The prices for boosters are de�ned in the table at the beginning of this document.

3.1 Enhanced submission format

When submitting solutions for contest tasks, a team has an
option to include into their .zip-archive a number of �les
named prob-NNN.buy for selected problems NNN. These �les
act as booster purchase descriptors and specify boosters the
team is willing to purchase to enhance their solutions for
the corresponding tasks. A booster purchase descriptor is
simply a series of (possibly repeating) booster codes, e.g.,
BBFFCCCLR.1 The purchased boosters are assumed to be avail-
able from the very beginning of the worker-wrapper execu-
tion and, thus, can be used immediately.

The checker and visualiser for the contest solutions have been now updated to take optional
.buy-�les. An example of a task solution relying on purchased boosters is also available:

https://icfpcontest2019.github.io/download/purchasing-examples.zip
1The booster purchase descriptor cannot include the spawn point symbol X.

4

(Also, it’s an anagram of Monadic Lab)

Proof-of-Work

Proof-of-Wrap

Proof-of-Wrap in a Nutshell

• Lambda-chain is a synchronous distributed (in fact, not) consensus protocol

• Initially, a genesis block is announced. It contains:
(1) A map for wrapping (similar to a task from the main contest)
(2) A proof-of-wrap puzzle (new map specification)

• For the next 15 minutes, the contest server expects solutions for the PoW block:
(1) A solution for the wrapping task
(2) A new task (map) satisfying the specification in the puzzle

• 100,000 LAM are split between the teams with top 25 best-ranked solutions for (1)

• A contributed map (2) from one of the top 10 ranked teams is chosen  
for the next round’s task (1)
• This team is awarded additional 2,000 LAM and is banned for the next round

• The cycle repeats with the new map and a new puzzle (generated by organisers)

+ #nodes

#boosters

#points-in

…

The Essence

• To get awarded LAM, one has to solve current block’s task and
propose a map for the next block’s task

• The block reward (in LAM) is proportional to the quality of the solution

• If a team’s map is chosen as a task for the next block, it cannot
participate in the next round of mining, but gets an extra reward

Genesis Block Task

Rules for Contributed Maps
• Each block’s puzzle specifies parameters for the next block map proposal:

• Dimensions of the map
• A distribution of boosters in the puzzle
• A number of coordinates that should be within it
• A number of coordinates that should be outside of it, etc.

• Suggested maps shouldn’t bee too sparse or too small (size condition)

• They also shouldn’t bee too boring or too heavy

Spending Lambda-coins

• A team can spend awarded LAM on boosters

• LAM can be spent multiple times in resubmissions

• Alternatively, LAM can be exchanged to score
points in the ration 1 to 1

ICFP Programming Contest 2019

Lambda-coin and Lambda-chain
Version 2.0

ICFP Programming Contest Organisers

June 22, 2019, 10:01am UTC

In the past 24 hours, the ICFP contestants were very active on the Internet, discussing wrap-
ping, drilling, teleporting, and other contest-related activities. This has not gone unnoticed by e-
commerce providers, and as a result the contest organisers’ mailbox got overwhelmed with emails
entitled “Best Deals on Your Wrapping Gear” and similarly. Out of curiosity, we have checked
some of these emails and indeed found quite interesting deals, which we decided to share with the
contest participants:

Item Price (LAM)

Manipulator 1000
Fast Wheels 300
Drill 700
Teleport 1200
Cloning 2000

In the table above, the prices for the boosters are given in lambda-coins (LAM), the world’s
soon-to-be most popular and stable digital currency. The characteristic feature of lambda-coin
is that it is powered by Lambda-chain — a novel distributed consensus proto-
col that has been designed to be environmentally-friendly. In the past, digital
currencies were predominantly obtained by the energy-intense mining pro-
cess known as Proof-of-Work, which had no additional bene�ts besides mint-
ing coins, and was harming Earth’s atmosphere, accelerating global warming.
Since then, the scienti�c community managed to devise better protocols that
award digital currency for solving timely problems without harming the environment.

The Lambda-chainminingmechanism, being extremely versatile, can servemultiple purposes,
but at the moment, luckily for us, it has been set up (using a decentralised consensus mechanism),
to award lambda-coins for solving worker-wrapper problems via the patented scheme known as
Proof-of-Wrap®. While this activity is not mandatory for winning the contest, we encourage the
teams to take part in Lambda-chainmining. This is a great way to earn some lambda-coins, which
can be then used to buy boosters to improve the teams’ solutions for the main contest.

1 Proof-of-Wrap® in a Nutshell

In the Proof-of-Wrap® scheme for mining lambda-coins, the participants (a.k.a. miners) contribute
solutions to worker-wrapper tasks, while also proposing some tasks to solve. The mining protocol
is semi-synchronised and works in rounds. In each round, a new block problem is announced. A
block problem consists of the two components:

1

Provided Infrastructure
for Lambda-coin Mining

• A Python script to submit block solutions

• Command-line block explorer

• Real-time monitoring of submitted solution

• Rankings with and without unspent LAM

The Contest

ICFP Programming Contest 2019

Lambda-coin and Lambda-chain
Version 2.0

ICFP Programming Contest Organisers

June 22, 2019, 10:01am UTC

In the past 24 hours, the ICFP contestants were very active on the Internet, discussing wrap-
ping, drilling, teleporting, and other contest-related activities. This has not gone unnoticed by e-
commerce providers, and as a result the contest organisers’ mailbox got overwhelmed with emails
entitled “Best Deals on Your Wrapping Gear” and similarly. Out of curiosity, we have checked
some of these emails and indeed found quite interesting deals, which we decided to share with the
contest participants:

Item Price (LAM)

Manipulator 1000
Fast Wheels 300
Drill 700
Teleport 1200
Cloning 2000

In the table above, the prices for the boosters are given in lambda-coins (LAM), the world’s
soon-to-be most popular and stable digital currency. The characteristic feature of lambda-coin
is that it is powered by Lambda-chain — a novel distributed consensus proto-
col that has been designed to be environmentally-friendly. In the past, digital
currencies were predominantly obtained by the energy-intense mining pro-
cess known as Proof-of-Work, which had no additional bene�ts besides mint-
ing coins, and was harming Earth’s atmosphere, accelerating global warming.
Since then, the scienti�c community managed to devise better protocols that
award digital currency for solving timely problems without harming the environment.

The Lambda-chainminingmechanism, being extremely versatile, can servemultiple purposes,
but at the moment, luckily for us, it has been set up (using a decentralised consensus mechanism),
to award lambda-coins for solving worker-wrapper problems via the patented scheme known as
Proof-of-Wrap®. While this activity is not mandatory for winning the contest, we encourage the
teams to take part in Lambda-chainmining. This is a great way to earn some lambda-coins, which
can be then used to buy boosters to improve the teams’ solutions for the main contest.

1 Proof-of-Wrap® in a Nutshell

In the Proof-of-Wrap® scheme for mining lambda-coins, the participants (a.k.a. miners) contribute
solutions to worker-wrapper tasks, while also proposing some tasks to solve. The mining protocol
is semi-synchronised and works in rounds. In each round, a new block problem is announced. A
block problem consists of the two components:

1

Figure 1: A map with two obstacles and a partial route of a worker-wrapper. The walls and solid
obstacles are shown in dark color. The position of the worker-wrapper’s body is depicted by a red
dot; dark yellow squares show the current reach of its manipulators, while the light yellow squares
show the parts of the surface that are already wrapped.

2 Maps and Worker-Wrapper Navigation
We have acquired a number of maps of mines that can be turned into silos for legacy code. Each
map represents a single worker-wrapper task. The boundary of a map is encoded as a rectilinear
polygon, described by the list of its vertices with non-negative integer coordinates. The list of
vertices, therefore, de�nes the boundary of a map that is located “on the left” with respect to the
direction induced by traversing the list.

The body of a worker-wrapper occupies a 1⇥1 square on the surface of the map, and its current
position is described as the coordinates of the square’s bottom-left corner. The initial position of
the worker-wrapper is explicitly speci�ed for each task. A map may contain a number of solid
obstacles; each obstacle is encoded similarly to how the map is encoded. The obstacles do not
touch each other or the boundary of the map, therefore, the worker-wrapper can reach any point
within the mine that is not occupied by an obstacle.

An example of a 10 ⇥ 10 map with two obstacles is shown in Figure 1. The boundary of the
map is de�ned by the list of vertices [(0, 0), (10, 0), (10, 10), (0, 10)], while the obstacles are de�ned
by the lists [(4, 2), (6, 2), (6, 7), (4, 7)] and [(5, 8), (6, 8), (6, 9), (5, 9)], correspondingly.

2.1 Basic navigation and wrapping rules
A standard worker-wrapper modelWrappy-2019 (shown
on the right) is shipped with three universal foldable
robotic manipulators that are attached to its body and al-
low it to perform wrapping. Each robotic manipulator can
wrap one 1 ⇥ 1 square of surface within its reach. Once
a square is touched by a manipulator or the body of the
worker-wrapper, it is considered wrapped. In order to
cover the entire surface, at each unit of time the worker-
wrapper can perform one of the following actions:

• move to an adjacent square of the surface,
• turn 90°, changing the relative position of its manipulators with respect to its body,
• do nothing.

The initial con�guration of the manipulators is always the same and is described by the squares
with coordinates [(x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], where (x ,�) is the location of the worker-

2

Statistics

Regular Contest

• 194 registered teams

• 105 complete profiles

• Lightning division
• 774 submissions
• 106 final submissions with non-zero scores

• Main contest

• 2745 submissions
• 142 final submissions with non-zero scores

• CPU time spent grading: 25h 27m

• Average grading time: 33.37 sec

Japan 29

USA 25

Russia 19

Germany 6

Ukraine 5

France 3

India 3

Australia 2

Denmark 2

Poland 2

Austria 1

Bahamas 1

Canada 1

Switzerland 1

Colombia 1

United Kingdom 1

Indonesia 1

Iceland 1

Italy 1

Latvia 1

Malaysia 1

The Netherlands 1

New Zealand 1

Portugal 1

Singapore 1

No Info 6

Countries (as in Profiles)

Pictures: team tech.kontur.ru

Picture credit: Niki Vazou

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10 11 12

Team size histogramTeams with N members

29

27

14

12

10
9

7
6 6

5 5
4

3 3
2 2 2 2 2

1 1 1 1 1 1 1 1 1 1

c++
pyth

on rust

hask
ell bash

jav
asc

rip
t

ruby
ko

tlin
ocam

l c# sca
la go jav

a sh c
clo

jure f# lisp

typ
esc

rip
t

co
mmon l

isp
cry

sta
l

han
d

perl

pow
ers

hell r

she
llsc

rip
t

sm
t-l i

b sql
vu

e.j
s

0

5

10

15

20

25

30

35

0

20

40

60

80

100

120

140

160

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172

Submissions per hour of the contest

Lambda-chain Statistics

• 31 hour of mining

• 4177 puzzle solutions submitted

• 3769 of them are valid (90.23%)

• 121 block mined

• 12,136,480 LAM awarded

-10

0

10

20

30

40

50

0 20 40 60 80 100 120 140

Block submissions for each block

total_subs good_subs

Slow adoption:  
had to postpone mining for 10 hours

Brave Early Adopters

• Unagi

• All your lambda are belong to us

• Sound! TypeSystem

• 1kg cheese

-10

0

10

20

30

40

50

0 20 40 60 80 100 120 140

Block submissions for each block

total_subs good_subs

Contributed Task Maps:  

Expectations vs Reality

A possible proposal 
for Block #40 task

An actual proposal 
for Block #40 task

An actual proposal 
for Block #40 task

Accepted proposal 
for Block #40 task

Unagi
6%

CowDay
6%

Pigimarl
5%

Sound! TypeSystem
5%

tech.kontur.ru
4%

1kg cheese
4%

Lambding Snakes vs. Coding Monkeys
4%

�	���
4%

Gon the Fox
3%

Piggybank Software
3%

Frictionless Bananas
3%

Better than nothing
3%

negainoido
3%

Perpetuum Mobile
3%

All your lambda are belong to us
3%

2 Ivans
3%

The Blind Hen
3%

Sunspear
3%

fixstars
3%

sanma
3%

The Cat is #1!!
2%

301
2%

#31
2%

NYCZRHTYO
2%

ichyo
2%

cw
2%

Raging Mushrooms
2%

Rotten Lambdas
2%

Olympia
1%

DiamondPrincess
1%

uni
1%

Lambda Spice
1%

cashto
1%

Zebra Infused Hamsters
1%

code-o-matic
1%

TBD
0%

paiv
0%

oka
0%

THIRTEEN
0%

The Skyrmions
0%

We meant to use Haskell
0%

kimiyuki+cannorin
0%

kstm.org
0%

blueminer
0%

10 GOTO 10
0%

DNIWE :: a
0%

lambda-llama
0%

blueboar team
0%

Why Not?!
0%
ush
0%

fruitsalad
0%

VMI#1
0%

BenPeteSmellyFeet
0%

Begot
0%

Einherji
0%

DrawingABlank
0%

jabber.ru
0%

Slow
0%

Camel worshippers
0%

phocom
0%

Press F to pay respect
0%

nathanf
0%

vodichka.kontur.ru
0%

srush
0%

Hydralisk eats Delicious Taco
0%

AimTech
0%

Robotics Research Inc.
0%

tsunaudon
0%

All In
0%
d4o
0%
3

0%
Sons of Yoshiko

0%
IKS
0%

The Waterfall Model
0%

Meh
0%

PLASTIC WORLD (tech.kontur.ru)
0%

getting_better_Samara
0%

Sauerkraut
0%

udalov
0%

LousyAttempt
0%

hahadaertu
0%

yowa
0%
ts

0%
Ty chyo pyos?

0%
TeamKieran

0%
tatsuo

0%
The Higher Order Of Zeuxis

0%
R22b
0%

O Caml, My Caml
0%

noClassnoState
0%

WINTERMUTE
0%

sumoru
0%

GlitchesBones
0%

Guru Meditation
0%

Free Tacos
0%

Side Effects May Include...
0%

xiberfix
0%

The Kerminators
0%

"; CREATE TABLE fun(); --
0%

Dis Functional
0%

The Lazy Evaluator
0%

GoTeamPlowUltraForce5Fox1
0%

usakdsteen
0%

Invisible Imp
0%

tentacles
0%

Kita Ward
0%

cobot
0%

tanzaku
0%
!

0%
Started late, but worked slow

0%
IQ1
0%

PaaaaN
0%

uguu.org
0%

tilde
0%

taxidriver
0%

FIRQ
0%

Rage against the type checker
0%

yarunee
0%

Polygon Research Labs
0%

cirimenjao
0%

Leptocephalus
0%

NCPLUG
0%

The Lone Code Money
0%

inthecloset
0%

udfewer
0%

tomerun
0%

Gringene
0%

hayatox
0%

goto 11
0%

Alatar
0%

Codingteam
0%

Overfull \hbox
0%

KatsuT0shi
0%

The Veil of Vaea
0%

JunkFood
0%

TheWildLobsters
0%

LILiK
0%

Sampou
0%

udfew
0%

Bottle kids!
0%

����
0%

dot cube
0%

trup16
0%

gd-misfits
0%

Turing Machinists
0%

Share of mined LAM

HODLing or Spending?

• Unspent LAM are added to the final scores (1 to 1)
• With an absolute score maximum 4,219,436 this is a substantial addition

• However, LAM spent wisely can reduce the scores of the competition!

If you are submitting via cURL, make sure there is no trailing slash after the submission URL.

Each team may only submit their solution once every 10 minutes.

To be considered for prizes, within two hours of the end of the contest, teams must update their
pro�le with complete team information and submit a single .zip archive with their source code,
a README.txt �le (brief directions for judges to build/run the solution; description of the solu-
tion approach; feedback about the contest; self-nomination for judges’ prize; etc), and any other
supporting materials. This can be done at:

https://icfpcontest2019.github.io/profile/

3.5 Scoring
The team’s score scoreteam,T for a task T , for which a valid solution is provided, is computed as

scoreteam,T ,
⇠
1000 ⇥ log2 (XT ⇥ YT) ⇥

tbest
tteam

⇡
,

whereXT andYT are the maximal x/�-dimensions ofT ’s map, tteam is a number of time units taken
by the team’s solution, and tbest is the minimum wrapping time among all teams’ corresponding
submitted solutions. Tasks for which a solution is not provided or is not valid yield a score 0.

3.6 Lightning Division
As traditional, the contest will have a Lightning Division spanning the �rst 24 hours. To be nom-
inated for the Lightning Division prize, submit your solutions by June 22, 2019, 10:00am UTC.

3.7 Determining the Winner
We will use the same procedure to determine the winner in both the lightning and full divisions,
ranking the teams by cumulative score, computed as the sum of scores for each task.

3.8 Live Standings
The Live Standings for the contest will be available at

https://icfpcontest2019.github.io/rankings/

The results of the live standings will be frozen one hour prior to the end of the Lightning Division.
They will resume being updated starting June 22, 2019, 1:00pm UTC, and will be frozen again
three hours prior the end of the contest.

3.9 The Judges’ Prize
The judges’ prize will be picked by the contest organisers. All entries in both the full and lightning
divisions are eligible for the judges’ prize.

Good luck, and happy wrapping!

7

With additional boosters  
it’s easier to become the best!

https://public.flourish.studio/visualisation/602197/

Spending Lambda-coins

• Of 12,136,480 LAM mined…

• 10,047,700 LAM have been spent

• 99.15% of them were spent on clones

Results

Lightning Division

Winner of the Lightning Division

Team  
All your lambda are belong to us

Rafaël Bocquet

C++ and Haskell are very suitable for rapid prototyping.

$500 cash prize

Team “All your lambda are belong to us”

Rafaël Bocquet

Two programming languages:

I C++ (Solver)

I Haskell (Scripts)

Three external solvers:

I aspino (Maximum satisfiability problem)

I LKH (Travelling salesman problem)

I Gurobi (Mixed-integer linear programming)

Solution outline

Main idea: Without boosters and manipulators, the problem would be a

variant of the Hamiltonian path problem.

Step 1 Collect boosters.

(LKH)

Step 2 Find a covering of the map by the robot shape.

(aspino)

Step 3 Find a Hamiltonian path in the induced graph.

(LKH)

Step 4 Insert rotations in the Hamiltonian path.

(aspino)

Step 5 Split the solution between clones.

(Gurobi)

Step 6 Local optimization (⇠ 10% improvement).

Solution outline

Main idea: Without boosters and manipulators, the problem would be a

variant of the Hamiltonian path problem.

Step 1 Collect boosters. (LKH)

Step 2 Find a covering of the map by the robot shape. (aspino)

Step 3 Find a Hamiltonian path in the induced graph. (LKH)

Step 4 Insert rotations in the Hamiltonian path. (aspino)

Step 5 Split the solution between clones. (Gurobi)

Step 6 Local optimization (⇠ 10% improvement).

press Space to play video

Main Division

Judges’ Prize

for the most elegant use of the entire set of boosters

Team  
Sound! TypeSystem

Team Sound! Type System  
(using Rust, C++, Python, JavaScript, and Go)

is an extremely cool bunch of hackers.

$500 cash prize

bakaming, chiro, fuqinho, gusmachine, nya3jp,
phoenixstarhiro, shunsakuraba, tanakh, yuizumi

Sound! TypeSystem

Sound! TypeSystem: Members

bakaming

chiro

fuqinho

gusmachine

nya3jp

phoenixstarhiro

chunjp

tanakh

yuizumi

Sound! TypeSystem: Overview

tanakh

fuqinho

gusmachine

fuqinho

yuizumimanual solver

buyer

autosubmitter

autominer

Wrappy Solvers Puzzle Solvers

cloud validator

cloud scheduler

Infrastructure

dashboard
LAM Solver

https://github.com/nya3jp/icfpc2019

https://github.com/nya3jp/icfpc2019

Sound! TypeSystem: Main Solutions

Wrappy solver by tanakh

● Written in Rust
● Based on BFS with plenty of hacky heuristics:
○ Give the first priority to cloning.
○ Give priority to filling small isolated areas to paint.
○ Get clones well spread out.
○ Manipulators are expanded to the left and right.
○ Use randomness to "improve" the score.
○ Some parameters were determined using simulated annealing.

Sound! TypeSystem: Main Solutions

Wrappy solver by fuqinho

● Written in C++
● Considers all cells within 5 steps not to be painted by another wrappy.
● Calculates the size of "islands" (isolated areas to paint) for each cell; the

smallest island takes the priority.
● Uses the beam search to determine the steps to cover the island and uses the

number of painted cells, with heuristical weights (e.g. to give higher score to
borders).

Sound! TypeSystem: Main Solutions

 LAM solver by bakaming

● Written in C++
● Main solvers make solutions with several purchase patterns. LAM solver joins

these solutions with earned LAM.
● We can solve this problem with dynamic programming as the number of LAM

and solution is very small.

Sound! TypeSystem: Puzzle Solvers

Puzzle solvers by yuizumi / gusmachine

● Written in Python
● Kept the logic simple to make it work before the original first round starts in 4

hours.
○ Start from a vacant field,
○ build a wall from each oSqs until the wall reaches edges or other walls, and
○ put bumps on walls to satisfy vMin vertices condition.

Second Prize

Team  
CowDay

C++ is a fine programming tool for many applications.

$500 cash prize

Akifumi Imanishi, Kohei Morita, Kohji Liu, Nozomu Nakajima,
Riku Kawasaki, Takuto Shigemura, Seiya Kamiya

ICFP’19 Contest 
Cowday Solution

Cowday Team

Members
Infrastructure Algorithm Puzzle

Akifumi Imanishi

Seiya Kamiya

Riku Kawasaki

Nozomu Nakajima

Kohei Morita

Takuto Shigemura

Coordinator(???)

Kohji Liu

3 Students, 4 employees

Algorithm-competition
Fanatics

Visualization

press Space to play

Solution
Before filling area, 
Collect Clone Items and Spawn
• Visit nearest cloner/spawn point

greedily

Preprocess
• Assign weight to each cell, according

to the distance to an obstacle or a
booster

Solution
Basis:
greedy-ish approach
• Enumerate all possible

next 5 steps and fix one
step which leads to the
largest weight in 5 steps,
iteratively

Cur

1

. 
:

2

5

Only fix first
move!

(Best)

To avoid leaving small
areas unfilled:
• If a move divides unfilled

area into separate
component, it tries filling
smaller one first.

To use multiple robots
efficiently:
• Each robot moves 100

turns at one time
This way, our robots are
asynchronous(!)

Misc
• To spend LAM, we always buy

Clones booster.
• Knapsack-like Dynamic

Programming algorithm in our
internal judge

• Do not use Drill or Teleporter
• Try both using/not using Fast

And our “equal” puzzle!

Thank you organizers!

First Prize

Team  
Unagi

Rust is the programming tool of choice for discriminating hackers.

$1000 cash prize

Takuya Akiba, Kentaro Imajo, Hiroaki Iwami,  
Yoichi Iwata, Toshiki Kataoka, Naohiro Takahashi

Team Unagi

Takuya Akiba
Preferred Networks

Toshiki Kataoka
Preferred Networks

Kentaro Imajo
Preferred Networks

Yoichi Iwata
National Institute of Informatics

Naohiro Takahashi
AtCoder

Hiroaki Iwami
FLYWHEEL

• Left-hand rule

• Split single-
worker solution

Kataoka (Team Unagi)

Left-hand rule

• Wrap squares near walls

• Repeat

Kataoka (Team Unagi)

• Single-worker solution → multi-worker solution

• Load balancing

• Bootstrap: visit C, X, C, C, C, C, ...

• 1st replica stays at X 
and uses boosters immediately

C (booster)

X (spawn point)

Kataoka (Team Unagi)

CloneClone

Local refinement

• Replace subsequence with shorter one

• Use depth-first and breadth-first searches

Kataoka (Team Unagi)

Earn coins

• Connect points

• Add corners

Round 2 Round 82

Kataoka (Team Unagi)

Spend coins

• Prepare solutions for buy settings: 
 [], 
 [B], 
 [C], 
 [C, B], 
 [C, C], 
 [C, C, C]

• Solve a knapsack problem

prob-002,,29259,381
prob-002,B,50721,356
prob-002,C,59200,224
prob-002,CB,51232,226
prob-003,,34881,210
prob-003,B,52255,210
prob-003,C,47656,128
prob-003,CB,52766,128
...

Kataoka (Team Unagi)

Kataoka (Team Unagi)

Language

• Solvers (task, puzzle, buy) 
are written in Rust

• Dashboard: Go

• Few lines of Shell script, JavaScript, Python

Kataoka (Team Unagi)

To Wrap Up

Figure 1: A map with two obstacles and a partial route of a worker-wrapper. The walls and solid
obstacles are shown in dark color. The position of the worker-wrapper’s body is depicted by a red
dot; dark yellow squares show the current reach of its manipulators, while the light yellow squares
show the parts of the surface that are already wrapped.

2 Maps and Worker-Wrapper Navigation
We have acquired a number of maps of mines that can be turned into silos for legacy code. Each
map represents a single worker-wrapper task. The boundary of a map is encoded as a rectilinear
polygon, described by the list of its vertices with non-negative integer coordinates. The list of
vertices, therefore, de�nes the boundary of a map that is located “on the left” with respect to the
direction induced by traversing the list.

The body of a worker-wrapper occupies a 1⇥1 square on the surface of the map, and its current
position is described as the coordinates of the square’s bottom-left corner. The initial position of
the worker-wrapper is explicitly speci�ed for each task. A map may contain a number of solid
obstacles; each obstacle is encoded similarly to how the map is encoded. The obstacles do not
touch each other or the boundary of the map, therefore, the worker-wrapper can reach any point
within the mine that is not occupied by an obstacle.

An example of a 10 ⇥ 10 map with two obstacles is shown in Figure 1. The boundary of the
map is de�ned by the list of vertices [(0, 0), (10, 0), (10, 10), (0, 10)], while the obstacles are de�ned
by the lists [(4, 2), (6, 2), (6, 7), (4, 7)] and [(5, 8), (6, 8), (6, 9), (5, 9)], correspondingly.

2.1 Basic navigation and wrapping rules
A standard worker-wrapper modelWrappy-2019 (shown
on the right) is shipped with three universal foldable
robotic manipulators that are attached to its body and al-
low it to perform wrapping. Each robotic manipulator can
wrap one 1 ⇥ 1 square of surface within its reach. Once
a square is touched by a manipulator or the body of the
worker-wrapper, it is considered wrapped. In order to
cover the entire surface, at each unit of time the worker-
wrapper can perform one of the following actions:

• move to an adjacent square of the surface,
• turn 90°, changing the relative position of its manipulators with respect to its body,
• do nothing.

The initial con�guration of the manipulators is always the same and is described by the squares
with coordinates [(x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], where (x ,�) is the location of the worker-

2

Contest Organisers

• Contest idea, design, specification
• Problem instances
• Back-end grader
• Solution visualiser
• Social media and mailing list

Ilya Sergey

Paramdeep Singh Raina
• Back-up server support

Contest Organisers

• Server-side programming
• Grading automation
• Rankings generation
• Data analysis
• Web-page

George Pîrlea

Contest Organisers

• Wrappy art

Lilia Anisimova

Past Contest Chairs

Sam Lindley

ICFP Contest 2017

Matthew Fluet

ICFP Contest 2018

Software and Tools
• Problem generation and back-end grader:

• Scala

• Visualisation:
• Scala.js

• Server-side scripting and data management:
• Python 3
• Flask
• SQLite
• Celery
• RabbitMQ
• AWS Elastic File System
• AWS EC2

• Web page:
• GitHub pages & Jekyll markdown

Sponsors

Thanks to all contest participants!

Good luck for  
ICFP Contest 2020!

Figure 1: A map with two obstacles and a partial route of a worker-wrapper. The walls and solid
obstacles are shown in dark color. The position of the worker-wrapper’s body is depicted by a red
dot; dark yellow squares show the current reach of its manipulators, while the light yellow squares
show the parts of the surface that are already wrapped.

2 Maps and Worker-Wrapper Navigation
We have acquired a number of maps of mines that can be turned into silos for legacy code. Each
map represents a single worker-wrapper task. The boundary of a map is encoded as a rectilinear
polygon, described by the list of its vertices with non-negative integer coordinates. The list of
vertices, therefore, de�nes the boundary of a map that is located “on the left” with respect to the
direction induced by traversing the list.

The body of a worker-wrapper occupies a 1⇥1 square on the surface of the map, and its current
position is described as the coordinates of the square’s bottom-left corner. The initial position of
the worker-wrapper is explicitly speci�ed for each task. A map may contain a number of solid
obstacles; each obstacle is encoded similarly to how the map is encoded. The obstacles do not
touch each other or the boundary of the map, therefore, the worker-wrapper can reach any point
within the mine that is not occupied by an obstacle.

An example of a 10 ⇥ 10 map with two obstacles is shown in Figure 1. The boundary of the
map is de�ned by the list of vertices [(0, 0), (10, 0), (10, 10), (0, 10)], while the obstacles are de�ned
by the lists [(4, 2), (6, 2), (6, 7), (4, 7)] and [(5, 8), (6, 8), (6, 9), (5, 9)], correspondingly.

2.1 Basic navigation and wrapping rules
A standard worker-wrapper modelWrappy-2019 (shown
on the right) is shipped with three universal foldable
robotic manipulators that are attached to its body and al-
low it to perform wrapping. Each robotic manipulator can
wrap one 1 ⇥ 1 square of surface within its reach. Once
a square is touched by a manipulator or the body of the
worker-wrapper, it is considered wrapped. In order to
cover the entire surface, at each unit of time the worker-
wrapper can perform one of the following actions:

• move to an adjacent square of the surface,
• turn 90°, changing the relative position of its manipulators with respect to its body,
• do nothing.

The initial con�guration of the manipulators is always the same and is described by the squares
with coordinates [(x + 1,�), (x + 1,� + 1), (x + 1,� � 1)], where (x ,�) is the location of the worker-

2

