
ICFP Programming Contest 2019

Worker-Wrappers against Bit Rot
Version 2.0

ICFP Programming Contest Organisers

June 21, 2019, 10:00am UTC

1 Introduction

With the tremendous success of functional programming in industry, it has been projected that by
the year 2030 most of the code in the world will be written in functional languages using lambdas.

To cater to the growing need for lambdas, in 2012 the ICFP contest participants have developed
procedures for lifting this precious resource from mines in Scotland.1 Since then, lambdas have
been excavated from mines all over the world, and in 2017, ICFP contestants came up with optimal
ways to deliver lambdas to users via advanced punting strategies.2

The accelerated mining and delivery of lambdas allowed us to
get rid of most legacy code — the infamous bit rotting problem was
solved once and for all. However, eliminating legacy code creates
a new problem: how to dispose of all the bit-rotten software? A
plan has been devised to store it in the empty mines the lambdas
were originally extracted from, which can now be converted into
legacy waste silos.

To prevent bit rot from seeping into the soil, the mines, before
they are turned into silos, need to be insulated by wrapping their
entire surface in a decay-containing substance. To perform this
task, scientists have designed robots called worker-wrappers. This year, we ask the ICFP commu-
nity to help dispose of bit-rotten software by programming worker-wrappers. The goal of this
contest is to determine, for a number of empty mines, the most e�cient way to insulate them.

1.1 Contest Speci�cation Updates

We expect the insulation demand to grow over the course of the contest, hence, the teams should
expect some updates during the next 72 hours. Speci�cation re�nements will be made available at
the following times:

• First update: June 21, 5:00pm UTC (7 hours into the contest)
• Second update: June 22, 0:00am UTC (14 hours into the contest)
• Third update: June 22, 10:01am UTC (immediately after the end of Lightning Division)

The details of the updates will be announced online in the following ways:

• via the contest website: https://icfpcontest2019.github.io
• in the contest Twitter account: @icfpcontest2019.

1https://icfpcontest2012.wordpress.com
2https://icfpcontest2017.github.io

1

https://www.timeanddate.com/worldclock/fixedtime.html?msg=ICFP+Programming+Contest+2019&iso=20190621T10&p1=1440
https://icfpcontest2019.github.io
https://twitter.com/icfpcontest2019
https://icfpcontest2012.wordpress.com
https://icfpcontest2017.github.io

Figure 1: A map with two obstacles and a partial route of a worker-wrapper. The walls and solid
obstacles are shown in dark color. The position of the worker-wrapper’s body is depicted by a red
dot; dark yellow squares show the current reach of its manipulators, while the light yellow squares
show the parts of the surface that are already wrapped.

2 Maps and Worker-Wrapper Navigation

We have acquired a number of maps of mines that can be turned into silos for legacy code. Each
map represents a single worker-wrapper task. The boundary of a map is encoded as a rectilinear
polygon, described by the list of its vertices with non-negative integer coordinates. The list of
vertices, therefore, de�nes the boundary of a map that is located “on the left” with respect to the
direction induced by traversing the list.

The body of a worker-wrapper occupies a 1×1 square on the surface of the map, and its current
position is described as the coordinates of the square’s bottom-left corner. The initial position of
the worker-wrapper is explicitly speci�ed for each task. A map may contain a number of solid
obstacles; each obstacle is encoded similarly to how the map is encoded. The obstacles do not
touch each other or the boundary of the map, therefore, the worker-wrapper can reach any point
within the mine that is not occupied by an obstacle.

An example of a 10 × 10 map with two obstacles is shown in Figure 1. The boundary of the
map is de�ned by the list of vertices [(0, 0), (10, 0), (10, 10), (0, 10)], while the obstacles are de�ned
by the lists [(4, 2), (6, 2), (6, 7), (4, 7)] and [(5, 8), (6, 8), (6, 9), (5, 9)], correspondingly.

2.1 Basic navigation and wrapping rules

A standard worker-wrapper model Wrappy-2019 (shown
on the right) is shipped with three universal foldable
robotic manipulators that are attached to its body and al-
low it to perform wrapping. Each robotic manipulator can
wrap one 1 × 1 square of surface within its reach. Once
a square is touched by a manipulator or the body of the
worker-wrapper, it is considered wrapped. In order to
cover the entire surface, at each unit of time the worker-
wrapper can perform one of the following actions:

• move to an adjacent square of the surface,
• turn 90°, changing the relative position of its manipulators with respect to its body,
• do nothing.

The initial con�guration of the manipulators is always the same and is described by the squares
with coordinates [(x + 1,y), (x + 1,y + 1), (x + 1,y − 1)], where (x ,y) is the location of the worker-

2

wrapper’s body (cf. dark yellow are in Figure 1). The manipulators fold when a worker-wrapper is
next to a wall or an obstacle, thus making it possible to move through the map without damaging
them, and unfold instantly when there is enough space to do so.

A solution of a task is a sequence of worker-wrapper’s actions (moves, turns, etc), which, when
executed, leaves no non-wrapped squares of surface inside the mine. The fewer units of time the
worker-wrapper spends to complete the task, the better the solution.

2.2 Boosters

Upon closer examination of the aquired mine maps, we have noticed some locations being marked.
As it turned out, in the process of mining lambdas, a number of useful artefacts — so-called boosters
— were left in the mines at those marked locations, lying on the �oor. These boosters can be used
to make the wrapping process much more e�cient (and also more fun). A worker-wrapper can
collect a booster by simply moving into the location containing it. Once collected, the booster can
be used just once at any later point of time, with the e�ects described below. As of now, four kinds
of boosters have been discovered:

2.2.1 Extension of the Manipulator

Code: B

E�ect: Using this booster allows a worker-wrapper to per-
manently attach an additional manipulator, extending its
wrapping range. A new manipulator can be only attached
to a side of a worker-wrapper’s body or of any of the al-
ready attached manipulators. In order to do so, when using
the booster, a relative location of the new manipulator posi-
tion (wrt. the current position of the worker-wrapper’s body)
should be provided.

For instance, if the current position of the worker-wrapper is (x ,y), and with its manipulators
it can reach positions [(x ,y), (x + 1,y), (x + 1,y + 1), (x + 1,y − 1)], a new manipulator can be
attached at relative positions (1, 2), (−1, 0), (2, 1), etc, but not at a position (3, 1) or (0, 0). Once a
manipulator is attached, e.g., at (1, 2), the worker-wrapper can reach positions [(x ,y), (x+1,y), (x+
1,y + 1), (x + 1,y − 1), (x + 1,y + 2)], and if another manipulator is then attached at (−1, 0), it will
be able reach positions [(x − 1,y), (x ,y), (x + 1,y), (x + 1,y + 1), (x + 1,y − 1), (x + 1,y + 2)] The
exact format of specifying an extension is provided in Section 3.2.

2.2.2 Fast Wheels

Code: F

E�ect: This booster temporarily speeds-up the worker-
wrapper, allowing it to make two moves in the same direc-
tion (up/down/left/right) in a single unit of time, assuming
there is enough room to do so. If the there is a room for only
one step (for instance, the worker-wrapper is just one square
away from a wall), only one step will be performed. Unfortu-
nately fast wheels also wear o� fast, and their e�ect only lasts
for 50 units of time. Using a new pair of fast wheels while a
pair is already active extends the e�ect for additional 50
units of time for up to additional 50 units of time (i.e., for
the maximum of the remaining durations, not their sum) without increasing the speed any
further.

3

2.2.3 Drill

Code: L

E�ect: Using a drill booster allows a worker-wrapper to
move through obstacles and even walls of the mine, creat-
ing tunnels of 1 square width. However, the drill cannot be
used to move beyond the bounding box of the map (i.e., to
the locations with coordinates that are negative or exceed the
maximalX/Y -coordinate of the map’s vertices). Once started,
the drill remains active for 30 units of time, after which it
wears o�. The e�ect of using a second drill with one already
activated follows the same rules as when using a second pair
of fast wheels.

The drill booster can be used in combination with fast
wheels and vice versa.

2.2.4 Mysterious Point

Code: X

E�ect: The e�ect of this booster is currently unknown. Furthermore, it seems that it cannot be
collected: the points on the map marked with this code contain some strange devices that are
�rmly mounted to the rock surface. Perhaps their purpose will become clear later.

2.2.5 Using boosters

Using each booster takes one time unit, during which the worker-wrapper cannot perform another
action. Once the booster is used, it is considered spent and cannot be used again.

2.3 Rules of manipulator reachability

Worker-wrapper’s manipulators are highly �exible, but have a limited reach, which should be
taken into the account when calculating the solution. For instance, obstacles and corners of the
mine can block them from reaching certain squares. According to the worker-wrapper speci�ca-
tion, a square of surface can only be reached by a manipulator if its centre is visible from the centre
of the square, corresponding to the location of the worker-wrapper’s body. A point is considered
visible from another if it can be connected by a straight segment without intersecting the sides of
walls and obstacles (touching corners is allowed). Figure 2 shows an example of squares within
and outside the reach of a worker-wrapper with an extended set of manipulators.

4

Figure 2: Worker-wrapper’s reach is blocked by an obstacle.

3 Rules of the Contest

3.1 Task descriptions

Each worker-wrapper task is described by a single �le prob-NNN.desc containing a four-tuple with
the following components, separated by the character #:

• a contour map of the mine,
• an initial location of the worker-wrapper inside the mine,
• a (possibly empty) list of obstacles separated by semicolons,
• a (possibly empty) list of boosters and their locations separated by semicolons.

Booster kinds are denoted by their code, as de�ned in Section 2.2. The exact grammar of the task
description is given below:

x ,y : Nat
point ::= (x ,y)

map ::= repSep (point, ”, ”)
BoosterCode ::= B | F | L | X

boosterLocation ::= BoosterCode point
obstacles ::= repSep (map, ”; ”)
boosters ::= repSep (boosterLocation, ”; ”)

task ::= map # point # obstacles # boosters

5

3.2 Encoding solutions

A solution for a task prob-NNN.desc is a sequence of actions encoded as a single-line text �le named
prob-NNN.sol for the corresponding number NNN. The actions are encoded as follows:

action ::= W (move up)
| S (move down)
| A (move left)
| D (move right)
| Z (do nothing)
| E (turn manipulators 90° clockwise)
| Q (turn manipulators 90° counterclockwise)
| B(dx, dy) (attach a new manipulator with relative coordinates (dx, dy))
| F (attach fast wheels)
| L (start using a drill)

solution ::= rep (action)

A solution is valid, if it does not force the worker-wrapper to go through the walls and obstacles
(unless it uses a drill), respects the rules of using boosters, and, upon �nishing, leaves all reachable
squares of the map wrapped.

3.3 Examples

An example task with valid solutions is available at

https://icfpcontest2019.github.io/download/part-1-examples.zip

A JavaScript checker and a visualiser are available for testing individual solutions:

Visualiser: https://icfpcontest2019.github.io/solution_visualiser/
Checker: https://icfpcontest2019.github.io/solution_checker/

3.4 Registration and Submission

The initial pack with 150 tasks to solve can be downloaded at

https://icfpcontest2019.github.io/download/part-1-initial.zip

To participate in the ranking, one needs to register the contest team to obtain a team-speci�c
private identi�er at:

https://icfpcontest2019.github.io/register/

Please write down your private ID. You will be using it throughout the contest.

Submissions should be archived as a single .zip �le containing exactly the �les prob-NNN.sol for the
corresponding maps from the task archive (some solutions can be omitted). Submit your solution
archive at:

https://icfpcontest2019.github.io/submit/

or via the command line, replacing the private ID and �le path appropriately:

curl -F "private_id=34fbde" -F "file=@solutions.zip" https://monadic-lab.org/submit

6

https://icfpcontest2019.github.io/download/part-1-examples.zip
https://icfpcontest2019.github.io/solution_visualiser/
https://icfpcontest2019.github.io/solution_checker/
https://icfpcontest2019.github.io/download/part-1-initial.zip
https://icfpcontest2019.github.io/register/
https://icfpcontest2019.github.io/submit/

If you are submitting via cURL, make sure there is no trailing slash after the submission URL.

Each team may only submit their solution once every 10 minutes.

To be considered for prizes, within two hours of the end of the contest, teams must update their
pro�le with complete team information and submit a single .zip archive with their source code,
a README.txt �le (brief directions for judges to build/run the solution; description of the solu-
tion approach; feedback about the contest; self-nomination for judges’ prize; etc), and any other
supporting materials. This can be done at:

https://icfpcontest2019.github.io/profile/

3.5 Scoring

The team’s score scoreteam,T for a task T , for which a valid solution is provided, is computed as

scoreteam,T ,
⌈
1000 × log2 (XT × YT) ×

tbest
tteam

⌉
,

whereXT andYT are the maximal x/y-dimensions ofT ’s map, tteam is a number of time units taken
by the team’s solution, and tbest is the minimum wrapping time among all teams’ corresponding
submitted solutions. Tasks for which a solution is not provided or is not valid yield a score 0.

3.6 Lightning Division

As traditional, the contest will have a Lightning Division spanning the �rst 24 hours. To be nom-
inated for the Lightning Division prize, submit your solutions by June 22, 2019, 10:00am UTC.

3.7 Determining the Winner

We will use the same procedure to determine the winner in both the lightning and full divisions,
ranking the teams by cumulative score, computed as the sum of scores for each task.

3.8 Live Standings

The Live Standings for the contest will be available at

https://icfpcontest2019.github.io/rankings/

The results of the live standings will be frozen one hour prior to the end of the Lightning Division.
They will resume being updated starting June 22, 2019, 1:00pm UTC, and will be frozen again
three hours prior the end of the contest.

3.9 The Judges’ Prize

The judges’ prize will be picked by the contest organisers. All entries in both the full and lightning
divisions are eligible for the judges’ prize.

Good luck, and happy wrapping!

7

https://icfpcontest2019.github.io/profile/
https://www.timeanddate.com/worldclock/fixedtime.html?msg=ICFP+Programming+Contest+2019%3A+End+of+Lightning+Division&iso=20190622T10&p1=1440
https://icfpcontest2019.github.io/rankings/

	Introduction
	Contest Specification Updates

	Maps and Worker-Wrapper Navigation
	Basic navigation and wrapping rules
	Boosters
	Extension of the Manipulator
	Fast Wheels
	Drill
	Mysterious Point
	Using boosters

	Rules of manipulator reachability

	Rules of the Contest
	Task descriptions
	Encoding solutions
	Examples
	Registration and Submission
	Scoring
	Lightning Division
	Determining the Winner
	Live Standings
	The Judges' Prize

